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Abstract
This is a review of the Berry phase and Aharonov-Bohm effect from

a purely mathematical point of view. It is known from the adiabatic
theorem that the quantum state will remain at the ground state, but it
can vary in phase. the Berry phase is about the geometric part of the
phase gained under a cyclic evolution in the control space of Hamiltonian.
This phase depends only on the path (and not the traversing velocity).
Moreover, it can be written as the integral over the surface enclosed by the
path with some considerations. It even goes further and can be seen as a
holonomy on a bundle. Then Aharonov-Bohm effect can be seen through
the eyes of differential geometry. The facts of the physical existence of
potential in the absence of field (with considerations of gauge invariance)
will become a simple example of the Ambrose-Singer theorem.

1 the Berry phase

Assume a Hamiltonian, parameterized with control parameters. The control
space can be seen as a smooth manifold R. We use the function p(t) : [0, T ] → P
to traverse the path P on the manifold R over time.

Then the Schrödinger equation will be

iℏ
∂ |ψ(t)⟩
∂t

= H(p(t)) |ψ(t)⟩

Assuming starting with a ground state, and without degeneracy and closure
of gap (will be discussed in sec. 1.1) and slow-changing control parameters, we
can use the adiabatic theorem 1 and obtain

|ψ(t)⟩ = eiϕ(t)
∣∣∣nH(p(t))

0

〉
1Although there are more assertive statements of the quantum adiabatic theorem [13, 6,

3], we will stick to a simple one by Kato [8], which can be stated as follow.

Theorem 1. If we have a time-dependent Hamiltonian H(t) with descrete eigenvalues that
has no degeneracy and crossing, starting by the ground state |n0⟩, the final state at time T ,
is still the ground state with the probabilty 1−O( 1

T
).
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where
∣∣nA0 〉 is the ground state of A.

And then the evolution will be simplified to

iℏϕ̇(t) +
〈
n
H(p(t))
0

∣∣∣∇R

∣∣∣nH(p(t))
0

〉
· ṗ(t) = E0(p(t))

We already know that the Hamiltonian can be subtracted by a time-dependent
identity coefficient, like E0(p(t)). We call this process omitting the dynamical
phase.

ϕ̇(t) =
i

ℏ

〈
n
H(p(t))
0

∣∣∣∇R

∣∣∣nH(p(t))
0

〉
· ṗ(t)

∆ϕ =
i

ℏ

∫
P

〈
n
H(p(t))
0

∣∣∣∇R

∣∣∣nH(p(t))
0

〉
· dl (1)

We can see that the phase shift is independent of traversing velocity.
Moreover, cyclic paths are more of our interests, so, we can use a generalized

Stokes theorem 2 to derive

∆ϕ =
i

ℏ

∮
P

〈
n
H(p(t))
0

∣∣∣∇R

∣∣∣nH(p(t))
0

〉
· dl

=
i

ℏ

∫
inside(P )

(
∇R ×

〈
n
H(p(t))
0

∣∣∣∇R

∣∣∣nH(p(t))
0

〉)
· dS

=
i

ℏ

∫
inside(P )

(
∇R

〈
n
H(p(t))
0

∣∣∣×∇R

∣∣∣nH(p(t))
0

〉)
· dS

=
i

ℏ

∫
inside(P )

∑
i>0

(⟨n0|∇RH |ni⟩ × ⟨ni|∇RH |n0⟩)
E2
i

· dS

Which is the main result of Berry’s paper [4].

Theorem 2. the Berry phase (or the geometric phase) of a ground state (or
even an excited state) under a cyclic evolution P , can be written as 3

∆ϕP =
i

ℏ

∫
inside(P )

V · dS (2)

V :=
∑
i>0

(⟨n0|∇RH |ni⟩ × ⟨ni|∇RH |n0⟩)
E2
i

(3)

There are a few noteworthy points at this stage. One can redefine eigenvalues
up to a phase factor, and this is equivalent to applying a gauge transformation
like ∣∣∣∣ ˜

n
H(p)
0

〉
= eiβ(p)

∣∣∣nH(p)
0

〉
2Here we are using identities that are well-known for three-dimensional vector calculus,

but they can be extended to higher dimensions. See the original paper [4, sec. 2] for more
details

3It is also necessary to prove ∇ · V = 0, which is shown in [4, app. A]
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which results in a change by β(p(T )) − β(p(0)) phase shift, which is equal to
zero, for a closed path.

This was a quick review of the Berry phase definition. The motiviation
behind such definitions can be formalizing quantum control theory or just un-
derstand the geometric structure of phases through adiabatic processes.

1.1 Degenerate Case

Despite that calculation of the Berry phase in a degenerate case, must be hard,
but yet it has a great importance.

Intuitively from the formula 3, the vector field V will have singularity in the
degenerate point and yet it’s not odd that integral over the surface of a singular
vector field, may results in some constant, if singularity lays inside, and 0 if
singularity lays outside.

A 2-degenerate case has been studied rigorously in [4] and 3-degenerate case
can be found in [7].

2 Holonomy

From a purely mathematical point of view, We should start with a principal
fiber bundle B, which is made by Lie group G on the manifold M . 4

The manifold M here acts like the control space R and the lie group G is
the result of control, which is in Berry’s case, the phase of the quantum state,
or mathematically U(1) group.

Another thing we need is a constraint to connect the manifold to the Lie
group, likewise what a Hamiltonian do by connecting the control space to the
phase. We use this by the concept of connection, which can be defined in a few
ways, but here we define it as follow. [12]

Definition 1. If we ignore constraints and conditions, a principal G-connection
ω on B is a linear function TM → g, defined on each point of B.

Note that T means tangent bundle and g implies the Lie algebra associated
with the Lie group.

This definitions shows that for an infinitesimal change in control space, how
would the Lie group change respectively.

4Here we cannot state an exact definition of principal fiber bundle or any other necessary
concept from differential geometry, and for those, we refer to [10] and [9, vol. 1, chap. I, sec.
5], but just as an intuition for unfamiliar readers, here we informally define them.

A principal fiber bundle is (more than) a manifold made by the Cartesian product of a
Lie group (this is why it is called principal) and a base manifold. However, the result of
the product can have a different global topological structure compared to its components.
Alternatively, in other words, the neighborhood of fiber does not reflect the neighborhood of
the base manifold. As an example, assuming a line fiber ([−1, 1]) and a closed line manifold
(simply a circle), simple strip and Mobius strip are both fiber bundles (not principal, because
a line fiber is not a lie group).
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Definition 2. Holonomy group of connection ω at each point of p in B can be
defined as

Holp(ω) := {g|g ∈ G, a path from p to pg and consistent with ω exists} (4)

The idea behind this is that a loop γ : [0, 1] → M and a path p : [0, 1] → P
exists such that 

p(0) = p

p(1) = pg

exp
[∫ t

0
ωp(t′)(γ̇(t

′))dt′
]
= p(t)

(5)

By bringing back this concept to the Berry phase problem, Hol|ψ⟩ is the
group of possible phases for a closed path, starting from |ψ⟩ and ending in
e∆ϕ |ψ⟩

2.1 Rolling Ball Example

At first, this formulation was developed to solve classical mechanics problems,
such as the rolling ball. Assume a ball is rolling over an infinite surface, our
control parameters are the position of ball within the surface and the connection
here adds a constraint that the ball will not slip. Therefore in this case

M = R2

G = SO(3)

ωp(δx, δy) =

 0 0 δy

0 0 −δx
−δy δx 0


Then Hol must be the identity, or just rotations around one axis, or the

whole rotations, but as we do not have any prefered axis, and we know that it
is not identity, we can say that it is equal to SO(3) [5]

2.2 Ambrose-Singer Theorem

Here we state one of the important theorems in Holonomy in order to use it to
deeply understand Aharonov-Bohm effect.

But before stating, we should define curvature form of connection, which is
defined pretty like other curvatures in the literature of differential geometry.

Definition 3. The curvature form Ω is a bilinear function TM ⊗ TM → g
which is defined as curl 5 of ω with respect to M .

Theorem 3. For a principal fiber bundle P with a connection ω, the Lie algebra
of Holp(ω) will be generated by elements of Ωq at all q ∈ P s that are accessible
for p through the connection. [2][12]

5In a more formal way, we should use extrior covariant derivative together with defining
both ω and ω over tangent bundle of P instead of M . But in our case and our needs, this is
just enough. [9]
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We leave any further discussion on this theorem here and we will continue
in the next section, after a recap of Aharonov-Bohm effect.

3 Aharonov-Bohm Effect

Returning back to the Berry phase, Here we state a problem. If we have a
charged particle under time-independent electromagnetic potentials, with fully
controlled path in the space, which means that R = R3, then we are looking for
the phase it gains while moving in a closed path.

This problem can be solved using 2. And for an special case that electric
potential is zero, as it is solved in [4] and the result is

∆ϕP =
q

ℏ

∫
inside(P )

A · dS (6)

Nevertheless, to understand why this result is so important, we need to
describe the physics behind it. Assume a typical double-slit experiment with
a selenoid between two slits, as in fig. 3. The amazing part of the result is
that even though both paths are going through a space where B = 0 and they
must not be aware of the solenoid, we see a phase shift caused by the solenoid.
Moreover, this experiment can answer the question of which comes first, the
potential or the field, which is seemingly to be the potential. Also, it must
be mentioned that this experiment is compatible with the additional degree of
freedom in the potentials. [1]

Figure 1: Aharonov-Bohm setup, from [11]

Finally, we want to study this effect using the Ambrose-Singer theorem.
The set of Holp can specify which phase-shifts are possible to see through an
interferometer in an experimental setup. A trivial Holp (a group of identity)
means that interferometer cannot measure any phase-shift. Then here we try
to calculate Holp for a point in space. At the point we have B = 0 and even
maybe A = 0, but the Hol depends on the curvature. We first calculate the
connection itself and then the curvature.

Assume an infinitesimal change in position δr, then the phase-shift will be

e
iq
ℏ A·δr, then the ω = iq

ℏ
(
Ax Ay Az

)
, where i is the only generator of U(1).

As a result Ω = iq
ℏ ∇×A = iq

ℏ B which means that Holp = U(1) if and only if
there exists some q where B ̸= 0 and q is accessible for p through a controllable
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path, which is true in our case, and therefore we can see an interference in this
experiment.

4 Final Word

This review was an attempt to see this effect from an uncommon mathematical
point of view. I did not try to cover all of the mathematical results beyond the
Berry phase, as I obviously missed the Chern numbers in that case.
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